m2-traitement-benchmark/drivers/elastic.py

218 lines
7.3 KiB
Python
Raw Normal View History

2024-05-29 02:29:36 +02:00
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
from models.data_thread import Threads
from interfaces.db_testing_interface import DB_Testing
2024-05-31 15:53:07 +02:00
import json
2024-05-29 02:29:36 +02:00
INDEX = "threads"
class Elastic_Testing(DB_Testing):
driver_name = "ES"
2024-05-31 17:24:17 +02:00
def __init__(self, shards = 1) -> None:
2024-05-29 02:29:36 +02:00
super().__init__()
2024-05-31 17:24:17 +02:00
self.shards = shards
self.driver_name += f" ({shards} Shards)"
2024-05-29 02:29:36 +02:00
self.singles_data = []
for t in Threads:
x = t.__dict__.copy()
self.singles_data.append(x)
self.bulk_data = []
for t in Threads:
2024-05-31 15:53:07 +02:00
y = "{\"index\":{}}\n"
y += json.dumps(t.__dict__.copy())
2024-05-29 02:29:36 +02:00
self.bulk_data.append(y)
def delete_table(self, driver: Elasticsearch):
if driver.indices.exists(index=INDEX):
driver.indices.delete(index=INDEX)
def create_table(self, driver: Elasticsearch):
self.delete_table(driver)
driver.indices.create(index=INDEX, body={
'settings': {
'index': {
2024-05-31 17:24:17 +02:00
'number_of_replicas': 0,
'number_of_shards': self.shards
2024-05-29 02:29:36 +02:00
}
}
})
def delete_data(self, driver: Elasticsearch):
if driver.indices.exists(index=INDEX):
driver.indices.delete(index=INDEX)
def add_bulk(self, driver: Elasticsearch):
2024-06-01 17:12:31 +02:00
self.create_table(driver)
2024-05-31 15:53:07 +02:00
for i in range(0, len(self.bulk_data), 1000):
driver.bulk(index=INDEX, operations = '\n'.join(self.bulk_data[i:i+1000]), refresh=True)
2024-05-29 02:29:36 +02:00
def add_singles(self, driver: Elasticsearch):
for t in self.singles_data:
driver.index(index=INDEX, document=t)
def attach5_mr_mrs(self, driver: Elasticsearch):
query = {
"query": {
"bool": {
"must": [
{
"range": {
"attachment_count": {
"gt": 5
}
}
},
{
"terms": {
"subject.keyword": ["Mr", "Mrs"]
}
}
]
}
}
}
return f"Got {driver.count(index=INDEX, body=query).body['count']}"
def search_mails_ends_microsoftcom(self, driver: Elasticsearch):
query = {
"query": {
"wildcard": {
"cc_recipients.keyword": "*@microsoft.com"
}
}
}
return f"Got {driver.count(index=INDEX, body=query).body['count']}"
def search_lorem(self, driver: Elasticsearch):
query = {
"query": {
"match_phrase": {
"body": "Nullam sit amet turpis elementum ligula vehicula consequat. Morbi a ipsum. Integer a nibh."
}
}
}
return f"Got {driver.count(index=INDEX, body=query).body['count']}"
def get_sum_attachment_less_5(self, driver: Elasticsearch):
query = {
"size": 0,
"query": {
"bool": {
"must": [
{
"range": {
"attachment_count": {
"lt": 5
}
}
}
]
}
},
"aggs": {
"attachment_count": {
"sum": {
"field": "attachment_count"
}
}
}
}
2024-05-31 02:04:24 +02:00
return f"Got {driver.search(index=INDEX, body=query).body['aggregations']['attachment_count']['value']}"
def update_add_replies_per_last_name(self, driver: Elasticsearch) -> str:
agg_query = {
"size": 0,
"aggs": {
"reply_count_by_last_name": {
"terms": {
"script": {
"source": "String name = doc['sender_name.keyword'].value; String[] parts = /\\s+/.split(name); return parts[parts.length - 1]",
"lang": "painless"
},
"size": 1000
},
"aggs": {
2024-05-31 02:40:35 +02:00
"last_name_replies": {
2024-05-31 02:04:24 +02:00
"sum": {
"field": "reply_count"
}
}
}
}
}
}
agg_results = driver.search(index=INDEX, body=agg_query)
buckets = agg_results['aggregations']['reply_count_by_last_name']['buckets']
2024-05-31 02:40:35 +02:00
reply_counts = {bucket['key']: bucket['last_name_replies']['value'] for bucket in buckets}
2024-05-31 02:04:24 +02:00
update_query = {
"script": {
"source": """
String name = ctx._source.sender_name;
String[] parts = /\\s+/.split(name);
String lastName = parts[parts.length - 1];
if (params.replyCounts.containsKey(lastName)) {
2024-05-31 02:40:35 +02:00
ctx._source.last_name_replies = params.replyCounts.get(lastName);
2024-05-31 02:04:24 +02:00
}
""",
"lang": "painless",
"params": {
"replyCounts": reply_counts
}
},
"query": {
"match_all": {}
}
}
2024-05-31 02:40:35 +02:00
2024-05-31 15:53:07 +02:00
driver.update_by_query(index=INDEX, body=update_query, conflicts="proceed", slices=len(Threads)//250, request_timeout=120)
2024-05-31 02:40:35 +02:00
def update_add_replies_per_subject(self, driver: Elasticsearch) -> str:
agg_query = {
"size": 0,
"aggs": {
"reply_count_by_subject": {
"terms": {
"script": {
"source": "String name = doc['sender_name.keyword'].value; String[] parts = /\\s+/.split(name); return parts[parts.length - 1]",
"lang": "painless"
},
"size": 1000
},
"aggs": {
"subject_replies": {
"sum": {
"field": "reply_count"
}
}
}
}
}
}
agg_results = driver.search(index=INDEX, body=agg_query)
2024-05-31 02:04:24 +02:00
2024-05-31 02:40:35 +02:00
buckets = agg_results['aggregations']['reply_count_by_subject']['buckets']
reply_counts = {bucket['key']: bucket['subject_replies']['value'] for bucket in buckets}
update_query = {
"script": {
"source": """
ctx._source.subject_replies = params.replyCounts.get(ctx.subject);
""",
"lang": "painless",
"params": {
"replyCounts": reply_counts
}
},
"query": {
"match_all": {}
}
}
2024-05-31 15:53:07 +02:00
driver.update_by_query(index=INDEX, body=update_query, conflicts="proceed", slices=len(Threads)//250, request_timeout=120)